Convex Structure Learning for Bayesian Networks: Polynomial Feature Selection and Approximate Ordering
نویسندگان
چکیده
We present a new approach to learning the structure and parameters of a Bayesian network based on regularized estimation in an exponential family representation. Here we show that, given a fixed variable order, the optimal structure and parameters can be learned efficiently, even without restricting the size of the parent variable sets. We then consider the problem of optimizing the variable order for a given set of features. This is still a computationally hard problem, but we present a convex relaxation that yields an optimal “soft” ordering in polynomial time. One novel aspect of the approach is that we do not perform a discrete search over DAG structures, nor over variable orders, but instead solve a continuous convex relaxation that can then be rounded to obtain a valid network structure. We conduct an experimental comparison against standard structure search procedures over standard objectives, which cope with local minima, and evaluate the advantages of using convex relaxations that reduce the effects of local minima.
منابع مشابه
Learning Bayesian Network Structure Using Genetic Algorithm with Consideration of the Node Ordering via Principal Component Analysis
‎The most challenging task in dealing with Bayesian networks is learning their structure‎. ‎Two classical approaches are often used for learning Bayesian network structure;‎ ‎Constraint-Based method and Score-and-Search-Based one‎. ‎But neither the first nor the second one are completely satisfactory‎. ‎Therefore the heuristic search such as Genetic Alg...
متن کاملLearning Bayesian Networks Using Feature Selection
This paper introduces a novel enhancement for learning Bayesian networks with a bias for small, high-predictive-accuracy networks. The new approach selects a subset of features that maximizes predictive accuracy prior to the network learning phase. We examine explicitly the eeects of two aspects of the algorithm, feature selection and node ordering. Our approach generates networks that are comp...
متن کاملLearning Markov Blankets for Continuous or Discrete Networks via Feature Selection
Markov Blankets discovery algorithms are important for learning a Bayesian network structure. We present an argument that tree ensemble masking measures can provide an approximate Markov blanket. Then an ensemble feature selection method is used to learn Markov blankets for either discrete or continuous networks (without linear, Gaussian assumptions). We compare our algorithm in the causal stru...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1206.6832 شماره
صفحات -
تاریخ انتشار 2006